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Abstract Secondary structure prediction is a crucial task
for understanding the variety of protein structures and
performed biological functions. Prediction of secondary
structures for new proteins using their amino acid sequen-
ces is of fundamental importance in bioinformatics. We
propose a novel technique to predict protein secondary
structures based on position-specific scoring matrices
(PSSMs) and physico-chemical properties of amino acids.
It is a two stage approach involving multiclass support
vector machines (SVMs) as classifiers for three different
structural conformations, viz., helix, sheet and coil. In the
first stage, PSSMs obtained from PSI-BLAST and five
specially selected physicochemical properties of amino
acids are fed into SVMs as features for sequence-to-
structure prediction. Confidence values for forming helix,
sheet and coil that are obtained from the first stage SVM

are then used in the second stage SVM for performing
structure-to-structure prediction. The two-stage cascaded
classifiers (PSP_MCSVM) are trained with proteins from
RS126 dataset. The classifiers are finally tested on target
proteins of critical assessment of protein structure predic-
tion experiment-9 (CASP9). PSP_MCSVM with brain-
storming consensus procedure performs better than the
prediction servers like Predator, DSC, SIMPA96, for
randomly selected proteins from CASP9 targets. The
overall performance is found to be comparable with the
current state-of-the art. PSP_MCSVM source code, train-
test datasets and supplementary files are available freely in
public domain at: http://sysbio.icm.edu.pl/secstruct and
http://code.google.com/p/cmater-bioinfo/
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Introduction

Proteins are large biological molecules made of amino acids
arranged into a linear chain and joined together by peptide
bonds between the carboxyl and amino groups of adjacent
amino acid residues which perform all important tasks in
organism and participate in every process within cells; such
as catalyzing biochemical reactions, structural or mechanical
functions, cell signaling, immune responses, cell adhesion etc.
Understanding secondary structures from linear sequences
help in understanding structure-function relationships of
proteins. Many researchers predict the secondary structure of
protein to obtain knowledge of three-dimensional structure of
protein. Though secondary structure prediction is not suffi-
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cient to get three-dimensional structure but it may give
insights of overall protein structure. Generating chemically
verified ground-truth protein structures using nuclear mag-
netic resonance (NMR) or X-ray crystallography are expen-
sive both in cost and time sense. With the initiation of the
large-scale sequencing projects (such as the Human Genome
Project), amino acid sequences for a very large number of
proteins have been discovered but their structures are yet to be
identified. Here comes the role of computational techniques
that may not be as accurate as NMR, but gives an overall idea
of protein structure with reasonable accuracy. These are
particularly useful for drug design research. However, there is
no computational method that predicts protein secondary
structures consistently with excess of 80% accuracy. This is
tempting for the researchers, especially the machine-learning
community, to develop novel methods powered with latest
computing facilities and algorithmic advancements.

Protein secondary structure prediction (PSP) has been a
well-studied problem for over three decades that produced
more and more accurate solutions. Despite such efforts,
large gaps in accuracies still exist between the current state-
of-the-art and the ground truth annotations for protein
sequences. In the current work, we have tried to minimize
this gap with the help of two-stage multiclass support
vector machine (SVM) classifiers. The general objective of
prediction of secondary structure is to classify a pattern of
residues (in the form of amino acid sequences) to a
corresponding sequence of secondary structure elements,
namely α-helix (H), β-sheet (E) and coil (C, the remaining
type). Single-stage approaches (sequence to structure) are
unable to find the interrelationship between secondary
structure elements. This was improved by introducing a
second stage prediction strategy which uses the contextual
information among the predicted structure elements by the
first stage, but the traditional two-stage approaches suffered
from the problem of low accuracy that was below 70%. It
could not encode long-range interactions between mole-
cules. Next, introducing sequence similarity or homology
information, predictive accuracy was increased to around
71%. However, even then the accuracy was not satisfactory
enough. To improve the prediction accuracies even further,
in our two-stage approach, we have included some physico-
chemical properties of amino acid from AAINDEX feature
database (http://www.genome.jp/aaindex/) in addition to
homology information. It is worth mentioning that there are
many research experiments in this field involving artificial
neural networks (ANN) [1–6] and SVM [7], but in this work,
we have designed multi class SVMs (MCSVM) for predict-
ing secondary structures. To study the performance, we have
investigated the structures of the latest CASP9 target proteins
using our developed PSP_MCSVM system.

Algorithmic procedures for prediction of secondary
protein structures were started to evolve from late 1970s.

Propensity values of different amino acids for forming
various secondary structures play a key role in all these
methods. All the algorithmic methods evolved so far for
prediction of secondary protein structures can be grouped
into three broad categories, viz., first generation, second
generation and third generation methods, depending on
how residue information from amino acid sequences is
used. Each element of an amino acid sequence, representing
a specific monomer of the corresponding protein is called a
residue. Out of these, the first generation methods are
mainly based on single residue statistics, expressed by their
propensity values. The second-generation methods are
mainly based on a group of adjacent residues, and the third
generation methods additionally use information derived
from the sets of homologous sequences. Homologs are
proteins having similar structures due to their shared
ancestry. The homologous sequence similarity is very
useful information which is often termed as homology
information or evolutionary information.

The work by Chou and Fasman [8] represents an
important piece of first generation method. Search for
contiguous regions of residues with a high probability of
forming a secondary structure feature is central to this
work. In another pioneering attempt, Qian and Sejnowski
[1] (second generation), considered a window of 13 amino
acids, out of which the secondary structure of the central
amino acid was predicted by a neural network using the
identities of 12 neighboring amino acids, with a 20 bit
coding system for each amino acid.

Prediction of the secondary structure of the central
amino acid on the basis of information theoretic measure
is central to a series of GOR methods (second generation)
developed throughout the period of 1970s to 1980s. GOR I
method was developed for prediction of three secondary
structures, viz., helix, sheet, reverse turn referred to as
structural states of residues in [9]. Under this method, for
each of these three possible states, structural information
supplied by all the neighboring residues of a central amino
acid are summed up to form a gross information measure
for the said amino acid. The state, for which highest gross
information measure is obtained, is finally assigned to the
central amino acid. Here, a window of 17 contiguous
residues is considered. With this technique, secondary
structures of 60% of the total residues could be correctly
predicted as reported in [9]. To update GOR I method,
Gibrat et al. [10] included a new data table, based on
directional information values from 75 proteins of known
structures. The work of Gibrat et al. was expanded by
Garnier and Robson [11] to include the four structural
states. To do so, Garnier and Robson just enhanced the data
tables keeping the information theory equations and
algorithms of GOR I method the same. The technique thus
developed by Garnier and Robson is known as GOR II
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method. The structural information about the structure of a
central amino acid, supplied by its neighboring residues, is
all unconditional in the information theoretic equation of
GOR I method. All such information is combined with the
structural information preconditioned with the existence of
a particular amino acid in the central residue position under
GOR-III equation [11]. In GOR IV method [12], the
difference between the information sum for each structural
state and that for the set of its complementary states is
considered before determining the state of a central amino
acid. The state, for which the maximum information
difference is produced, is finally selected for the central
amino acid. On a database of 267 proteins, the mean
accuracy of GOR IV method was observed as 64.4% for a
three-state prediction.

PSI-BLAST [13] is one of the currently available
standard software for producing multiple alignments from
a given database. Klockzkowski et al. [12] has used PSI-
BLAST for inclusion of evolutionary information for
prediction of protein secondary structures in GOR V
method (third generation). For this work PSI-BLAST is
applied on a non-redundant database (Benson et al. 1999)
to generate multiple alignments after five iterations. Using
full jackknifing, a mean accuracy of 73.5% is observed by
application of GOR V method. The segment overlap (Zemla
et al. 1999), a measure of normalized secondary structure
prediction accuracy is observed to be 70.8% with this
method. One of the important neural network based second
generation methods is NN-PREDICT [14]. A two layer feed
forward neural network is used there for secondary
structure prediction from amino acid sequences. The
technique is reported to have obtained the best-case
prediction of 79% for the class of all-alpha proteins.
SIMPA96 [15] (second generation) is also another important
window based method, which uses training data of short
fragments, each of length equal to the window size,
collected from protein sequences of known structures but
minimal sequence similarity. Rost & Sander [2, 3] (third
generation) made some significant enhancement in the
neural network based paradigm for protein secondary
structure prediction. In their work, they have used multiple
sequence alignment with appropriate cut-offs to supply
more enriched information about the protein secondary
structure, compared to what can be supplied with a single
sequence to the neural network. The balanced training as
introduced by Rost and Sander results into a more balanced
prediction, without any bias on the overall three-state
accuracy. In the work of Rost and Sander, they have also
addressed the problem of inadequacy in the length
distribution of the predicted helices and strands by
introducing a second—level neural network for structure-
to-structure prediction. For final prediction of a protein
secondary structure, a voting method is followed with the

responses of 12 different neural networks working in
parallel on the same input. The group of networks is
referred to as a jury of networks by Rost and Sander. In
testing the performance of their method, Rost and Sander
prepared a database of 130 representative protein chains of
known structures. In this database, no two sequences can
have more than 25% identical residues. With seven fold
cross validation of results, the overall three-state prediction
accuracy of the method is observed as 69.7%. It was three
percentage points above the highest value (66.4% [2])
reported previously.

PHD [4] (third generation) is another method by Rost
and Sander that uses three level neural networks. This
method takes sequence profiles, conservation weights,
insertion-deletion, spacer (to exploit the total protein
length), length of protein, distances of the window with
respect to the protein ends as features. The prediction
accuracy for RS126 dataset is achieved as 73.5%.

PRED [16] (third generation) is another secondary
structure prediction server exploiting multiple sequence
alignments that attains the average Q3 accuracy of
prediction of 72.9%. NNSSP [17] (third generation) is a
scored nearest neighbor method by considering position of
N and C terminal in helices and strands. Its prediction
accuracy on RS126 dataset is achieved as 72.7%. PRED-
ATOR [18] (third generation) is quite a different method
from the above mentioned method in which propensity
values for seven secondary structures and local sequence
alignment is used in lieu of global multiple sequence
alignment. The prediction accuracy of this method on
RS126 dataset is achieved as 70.3%. PSIPRED [5] (third
generation) is a neural network based method, which has
three components. It conducts homology searches on a
different database and uses a different set of proteins for
training and testing. The residues are represented by the
PSI-BLAST scoring matrices. The sequence-to-structure part
of the method is a back-propagation neural network with
the input window of 15 residues. This neural network has
75 hidden nodes and three output nodes. The output of the
sequence-to-structure network is fed to the structure-to-
structure network in a window of 15 residues. It achieves
76.5 to 78.3 prediction accuracy on test data. This method
has, however, proven to be more successful than the others
in the third critical assessment of techniques for protein
structure prediction (CASP3). PROF [6] (third generation)
is a neural network technique which used PSI-BLAST with
gap or without gap to search the sequence in the NR
database, to make the position specific profile. DSC [19]
(third generation) is another method in which amino acid
profile, conservation weights, indels, hydrophobicity have
been exploited in predicting the protein structure effectively
with 71.1% prediction accuracy on RS126 dataset. Guo et
al. [7] propose a high performance method (third genera-

J Mol Model (2011) 17:2191–2201 2193



tion) based on the dual-layer support vector machine
(SVM) and position-specific scoring matrices (PSSMs) on
the RS126 and CB513 dataset. The first SVM classifier
classifies each residue of each sequence into the three
secondary structure classes. The one–against-all strategy is
used for the multiclass classification. The outputs generated
from first layer SVM is used as inputs to second layer
SVM. Seven fold cross validation is used to test the
predictive accuracy of the classifier. On the CB513 dataset,
the overall per residue accuracy, the performance metric Q3

reaches 75.2% while segment overlap (SOV) accuracy
increases to 80.0%.

hybrid protein structure prediction (HYPROSP) [20]
(third generation) proposes a hybrid method which com-
bines knowledge based approach PROSP, with the machine
learning approach, PSIPRED. In PROSP (third generation),
a knowledge base is constructed with small peptide
fragments along with their structural information. A
quantitative measure match rate is used for a target protein
to extract structural information from PROSP. If match rate
is at least 80% then that information is being used for
prediction, otherwise prediction is done by popular tool
PSIPRED. However, when most of the proteins have match
rate less than 80% then the advantage of using HYPROSP is
less. To overcome this problem, a new method HYPROSP-
II [21] is introduced where local match rate is used to
define the confidence level of the PROSP prediction results.
They combine the prediction results of PROSP and
PSIPRED using a hybrid function defined on their
respective confidence levels. The average Q3 of HYPROSP
II is 81.8% and 80.7% on nrDSSP and EVA datasets
respectively.

Cole et al. proposes a prediction server JPRED3 [22]
(third generation) powered by Jnet algorithm in which
position-specific scoring matrix and hidden markov model
profiles (HMMMER) are used. It is developed through 7-
fold cross validation experiments on Astral Compendium of
SCOP domain data. By testing on blind dataset of 149
sequences it achieves a final secondary structure prediction
Q3 score of 81.5%.

PSP_MCSVM: materials and methods

In this work, a novel architecture for protein secondary
structure prediction is presented by cascading two MCSVM
classifiers. In the first stage, a MCSVM is used to predict
the secondary structure elements from the input amino acid
sequences. The second stage MCSVM, which is cascaded
to the first MCSVM, re-classifies the secondary structure
elements using the output from the first MCSVM. The
first stage network is referred to as sequence to structure
and the second stage as structure to structure. In the

present MCSVM approach, the input amino acid sequen-
ces with fixed size window are fed into the first MCSVM
classifier (C1). Then outputs obtained from C1 are applied
to the second MCSVM classifier (C2) to get the final
predictions. Figure 1 depicts the architecture of this two-
stage approach.

Multiclass SVM

Support vector machine (SVM) is primarily a binary
classification methodology that has been used for pattern
recognition and regression task. An SVM is used to
construct an optimal hyper-plane for maximizing the
margin of separation between the positive and negative
data set of pattern classes.

There are two types of approaches for multiclass SVM.
The first method called indirect approach where outputs

Fig. 1 Architecture of PSP_MCSVM is shown, where vi is input
amino acid sequence and rj is the amino acid under consideration for
prediction by C1 . The sliding window for amino acids is considered
as (rj−l) to (rj+l); where l=4 in this example. The final output of C2 is
shown as a labeled sequence of secondary structure elements; α-helix
(H), β-sheet (E) and coil (C)
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from several binary SVMs are combined to generate the
final classification. The common techniques for combining
the outputs of binary SVMs are one-against-all, one-
against-one and directed acyclic graph-support vector
machine (DAGSVM). In the second method, called direct
approach, separating boundaries for all the classes are
found in one step. For each class, a decision rule is defined
similar to that of binary SVMs and during testing the test
data point is assigned the label of the decision rule that
yielded the highest (positive) margin. Suppose a training
data set TD consists of pairs{ (xi,yi), i=1,2,…,n, yi ∈{−1,1}
and xi ∈Rn } where xi denotes input feature vector for ith
sample and yi denotes the corresponding target value. For a
given input pattern x the decision function of an SVM

binary classifier is f ðxÞ ¼ sign
PN
i¼1

yiaiKðx; xiÞ þ b

� �

where sign(u)=1 for u>0 and −1 for u<0, b is the bias
and K( x, xi )=8(x)8(xi). Here K (x, xi) is the kernel
function, used to map the input feature vector x into higher
dimensional feature space to make them linearly separable.
There are several kernel functions used in SVM. Some of
the popularly used kernel functions, for solving pattern
recognition problems, include Gaussian (RBF) kernel:
K x; xið Þ ¼ exp x�xik k

2s2

� �
where σ is the standard deviation

of the xi values, polynomial kernel: k x; xið Þ ¼ xTi xj þ t
� �d

where d is the degree of the polynomial and, linear kernel:
K x; xið Þ ¼ xTi xj.

To design the MCSVM for the current work, we have
used a method based on one-against-all approach proposed
by Crammer and Singer where we have three classes for
three secondary structures and three two-class rules where
kth discriminant function wT

k fðxÞ � gk separates training
vectors of the class k from the other vectors. The objective

function is designed to minimize: 1
2

PN
k¼1

wT
k wk þ c

Pn
i¼1

xi
subject to the following constraint:

wk
i fðviÞ � wT

k fðxiÞ � eik � xi; 8k 6¼ ki ð1Þ
where ki is the class or secondary structural type of the
residue to which the training data xi belong to, and
eik ¼ 1� cik , where cik ¼ 1, if ki=k, and cik ¼ 0 if ki≠k.

Sequence-to-structure prediction

In the first level, features are extracted from the amino acid
residues, belonging to the hypothetical sliding window
(short sequence of amino acids) placed over the linear chain
of amino acids of the protein. Six types of features, viz.,
position specific scoring matrix (PSSM) of amino acid, its
hydrophobicity value, molecular size, polarity, relative
frequency of amino acids in α-helix and relative frequency
of amino acid in β-sheet are extracted for each residue in
the sliding window, for predicting the structure of the
central residue in the sliding window under consideration.

For each residue we compute 20 position specific scoring
matrix values and five physicochemical properties as
features (i.e., 25 features for each residue). The width of
the sliding window considered here is 13 (six residues on
either side of the central residue under consideration) and
the total number of feature values for prediction of the
central residue is estimated as 325=25×13 (i.e., the product
of the said number of features and the window size). The
MCSVM classifier (C1) predicts the secondary structure of
the central amino acid of the window. By sliding the
window over the entire sequence of amino acids and
repeating the classification process, secondary structures
(sequence of helix, sheet or coil) of entire protein chain are
predicted.

Position specific scoring matrix

A position specific scoring matrix (PSSM) is constructed by
calculating position-specific scores for each position in the
multiple alignments with the highest scoring hits in an initial
BLAST search (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The
position specific scores (PSS) is calculated by assigning high
scores to highly conserved positions and near zero scores to
weakly conserved positions. The profile thus generated is
then used to perform a second BLAST search and the results
of each iteration are used to refine the profile.

Protein sequences are transformed into FASTA format to
get evolutionary information using PSI-BLAST (position
specific iterated BLAST). A local BLAST server in Windows
environment has been used to get PSSM from PSI-BLAST
after three iterations. Each residue in profile has 20
columns. So, the profile information of each amino acid
residue is estimated as a 20 element feature-vector.

Physicochemical properties

Physicochemical properties of amino acids have been
utilized to form another set of useful features. Those
properties are hydrophobicity value, molecular size and
polarity. Relative frequencies of amino acids in helix and
β-sheet, which are important for predicting the underlying
protein structure, are also used as features.

The features for the current experiment are chosen by
selecting latest features from significant feature types of
AAIndex database release 9.0 (http://www.genome.jp/
aaindex/). Table 1 gives a brief description of selected
features set.

Structure-to-structure prediction

In the second stage of our current work, another MCSVM
classifier (C2) is introduced to get better refinement over the
prediction decisions about the secondary structure annota-
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tion for the residue sequence. The refinement is based upon
the contextual information about the secondary struc-
tures, estimated over the neighbors of the central residue
within any sliding window. The input supplied to the
second level MCSVM consists of the degrees of
prediction confidence of C1 for classifying each residue
of the window into any of the three output classes, helix
(H), sheet (E) and coil (C). Therefore three prediction
confidence features are considered as inputs for the second
stage classifier C2. The number of outputs for C2 is again
three (i.e., H. E and C).

Degree of confidences for forming three structures, viz.,
helix, sheet and coil, obtained from the outputs of C1 have
been normalized in the range [0,1]. A sliding window of
width 13 is considered again, by taking six residues from
either side of the central amino acid under consideration,
generating 39 (=3×13) features. On the basis of these
features, the central residue of each sliding window is re-
classified as helix, sheet or coil by the second level
MCSVM C2.

Results and discussion

To evaluate the classification performance of the developed
PSP_MCSVM system, protein sequences from two standard
data sets, viz., RS126 and CASP9, are considered in our
current work.

The RS126 data set (http://www.compbio.dundee.ac.uk/
∼www-jpred/data/.) formed with 126 homologous globular
proteins contains structural information about 23,349
residues of these proteins. The percentage of three
secondary structures, viz., helix, strand and coil, as
occurred in these residues, are 32, 23 and 45 respectively.
The other dataset, used for the experimental here, is formed
with 96 proteins selectively taken from CASP9 (http://
predictioncenter.org/casp9/), originally released in 2010.
This is to select only those proteins, of which proper
structure related information is available in the critical
assessment of techniques for protein structure prediction.
The evaluation metrics used here for measuring perform-
ances of the PSP_MCSVM system on the said data sets are
explained below.

Evaluation metrics

Sensitivity measure

Sensitivity (also called recall rate) is the probability of
correctly predicting an example of that class. It is defined as
follows:

Sensitivity ¼ TPð Þ= TPþ FNð Þ; ð2Þ
where TP is the number of true positive, TN is total number
of true negative, FP is total number false positive and FN is
total number of false negative.

Specificity measure

Specificity (also known as Precision) measures the propor-
tion of negatives which are correctly identified. The
specificity for a class is the probability that a positive
prediction for the class is correct. It is defined as follows:

Specificity ¼ TP= TPþ FPð Þ: ð3Þ

Accuracy

Accuracy is the overall probability that prediction is correct.
It is defined below:

Accuracy ¼ TPþ TNð Þ= TPþ TNþ FPþ FNð Þ: ð4Þ

False alarm rate

False alarm rate for a class is the probability that an
example which does not belong to the class is classified as
belonging to the class. It is defined as follows:

False Alarm rate ¼ FP= FPþ TNð Þ: ð5Þ

Matthews correlation coefficient (MCC)

Matthews correlation coefficient (MCC) is used in machine
learning as a measure of quality of binary (two class)
classifications. It takes into account true and false positives

Sl. No. Accession number Brief feature description Reference

1 JURD980101 Modified Kyte-Doolittle hydrophobicity scale Juretic et al., 1998

2 GRAR740102 Polarity (Grantham, 1974)

3 DAWD720101 Molecular size (Dawson, 1972)

4 PRAM900102 Relative frequency in alpha-helix (Prabhakaran, 1990)

5 PRAM900103 Relative frequency in beta-sheet (Prabhakaran, 1990)

Table 1 Description of the
selected features from
AAIndex database
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and negatives and is generally regarded as a balanced
measure which can be used even if the classes are of
different sizes. The MCC is a correlation coefficient
between the observed and predicted binary classifications.

It returns a value between −1 and +1. A coefficient of +1
represents a perfect prediction, 0 an average random
prediction and −1 an inverse prediction. The corresponding
formulation is given below:

MCC ¼ TP� TN� FP� FNð Þ=sqrt TPþ FNð Þ TPþ FPð Þ TNþ FPð Þ TNþ FNð Þð Þ: ð6Þ

Besides the above metrics, to measure the prediction
accuracies of classifiers C1, and C2, the other metrics, such
as, Q3, QH, QE, QC, SOVall, SOVH, SOVE, SOVC are defined
below.

Overall accuracy (Q3)

It is a measure of prediction accuracy and computes the
percentage of residues predicted to be in their correct class
(given below). It measures the all true positive data for each
class (here, it is 3 for three secondary structural elements)
out of total data.

Q3 ¼ 100� ðTPH þ TPE þ TPCÞ
N

; ð7Þ

where TPH denotes true positive of helix, TPE denotes true
positive of sheet, TPC denotes true positive of coil, N
denotes total data.

Class accuracies (Qi)

Individual class accuracy measures the percentage of the
elements of class i that were predicted correctly out of all
elements belonging to that class i.

Qi ¼ 100� TPi

Ni
; ð8Þ

where TPi is true positive of class i, and Ni is total data in
class i.

Segment overlap measure (SOV)

SOV is a measurement developed by Rost et al. (1994) and
modified by Zemla et al. (1999) to reflect the specific goals
of secondary structure prediction.

Let Si be the set of overlapping segments where both
segments are in state i

Si ¼ fðs1;s2Þ : s1 \ s2 6¼ f; in state ig ð9Þ
and S

0
ibe the set of segments in state i for which there is no

overlapping segment in state i.

S
0
i ¼ fs1 : s2;s1 \ s2 ¼ f; in state ig ð10Þ
Let b(s) as the position at which segment s begins, e(s)

as the position at which segment s ends, then length of the
segment s is defined as:

lenðsÞ ¼ eðsÞ � bðsÞ þ 1: ð11Þ
The length of actual overlap of two segments s1 and s2 both
in state i is defined as:

min ovðs1; s2Þ ¼ minðeðs1Þ; eðs2ÞÞ �maxðbðs1Þ; bðs2ÞÞ þ 1:

ð12Þ
The length of the total extent for which either of the
segments s1 and s2 has a residue in state i is defined as:

max ovðs1; s2Þ ¼ maxðeðs1Þ; eðs2ÞÞ �minðbðs1Þ; bðs2ÞÞ þ 1:

ð13Þ
δ (s1, s2) is the integer value defined as:

dðs1; s2Þ ¼ min ðmax ovðs1; s2Þ �min ovðs1; s2Þ; int len
ðs1Þ
2

�
; int len

ðs2Þ
2

�� 	
ð14Þ

N (i) is the number of residues in state i defined as:

NðiÞ ¼
X
sðiÞ

lenðs1Þ þ
X
s0ðiÞ

lenðs2Þ: ð15Þ

The segment overlap for state i is given by

SOVi ¼ 100� 1

NðiÞ

�
X
SðiÞ

min ovðs1; s2Þ þ dðs1; s2Þ
max ovðs1; s2Þ � lenðs1Þ ð16Þ

and the overall segment overlap is given by

J Mol Model (2011) 17:2191–2201 2197



SOVall ¼ 100� 1P
i NðiÞ

X
i

X
SðiÞ

min ovðs1;s2Þ þ dðs1;s2Þ
max ovðs1;s2Þ � lenðs1Þ:

ð17Þ
Before the core portion of the experiment is conducted, the
task becomes selection of an appropriate kernel function for
the SVM classifiers used here.

Selection of kernel

In this work, SVMmulticlass tool has been used to predict
three secondary structural elements. SVMmulticlass is an
implementation of the multiclass SVM described in [23].
Choice of the SVM kernel function is an important decision
in the overall classification process. In the current work we
experimented with the training data sets for the first stage
MCSVM classifier to choose the suitable kernel. The 1st
stage MCSVM classifier with linear kernel gives accuracy
of 68.6%, the same classifier with polynomial kernel gives
−60% of accuracy and with RBF kernel gives 35% of
accuracy, when trained with Subset-II and III dataset (the
first fold CV-1 for the 3-fold cross validation experiment
discussed in the following sub-section). It is evident from
the results (shown in Table S1 and Fig. 2) that the linear
kernel with MCSVM outperforms polynomial or RBF
kernels, to solve the problem under consideration.

Three-fold cross-validation experiment with RS126 dataset

For three fold cross-validations, the RS126 dataset is
partitioned into three equal sized subsets which are
referred to as subset-I, II, and III in the subsequent
discussion. In each fold two subsets are taken for training
and the remaining one set is used for testing. This process
is repeated three times such that the train and test sets
always remain mutually exclusive in any given experi-
ment. We also use the complete dataset for training over
the three experimental setups (to generate three model
files).

For testing the performance of MCSVM on RS126
dataset the evaluation metrics Q3, QH, QE, QC, SOVall,
SOVH, SOVE, SOVC were considered. We generated three
model files in three fold cross-validated experiments (CV-1,
CV-2 and CV-3) and Tables S2-A, S2-C, S2-E show the
sequence to structure prediction performance over the test
samples. Tables S2-B, S2-D, S2-F give the details for
structure to structure predictions for three different folds
respectively. Here, we achieved 68% to 71% of Q3

accuracy and 61% to 67% of SOVall measure for all three
cross-validation experiments in sequence to structure
network. The average Q3 accuracy of 70.51% and the
average SOVall measure of 63.82% have been achieved for
sequence to structure prediction in three fold cross-
validation experiments. For some of the proteins, the Q3

accuracy and SOVall measure has been improved in
structure to structure prediction. But average Q3 accuracy
and SOVall measure have been decreased for most of the
proteins due to low prediction accuracy for the sheet (E)
class. Table S3-A and S3-B give the accuracy summary of
the two stage classifiers.

Experiments with CASP9 targets

Among 129 proteins of CASP9 targets, we took 96 targets
for our experiments to maintain consistency over availabil-
ity of corresponding structure related information in the
website of critical assessment of techniques for protein
structure prediction. We studied the performance of our
classifiers already trained with different subsets of RS126
dataset on CASP9 target proteins in two ways:

Firstly, we estimate the Q3 accuracy and SOVall measures
on CASP9 targets in sequence to structure level and then
structure to structure level with prediction results given in
Table S4-A, S4-B, S4-C, S4-D, S4-E, and S4-F. Addition-
ally, Tables S4-G and S4-H summarize the detailed results
by computing average values of the measures. It may
however be observed that the average Q3 accuracy and
SOVall measure have been decreased in structure to

Fig. 2 Comparative study of performance measures of three kernels in 1st stage MCSVM trained with subset-II and III
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structure level for most of the proteins due to low
prediction accuracy for sheet (E). Figure 3 gives the
graphical view of Q3 and SOV measures on CASP9 targets
using the developed two-stage MCSVM.

Secondly, other performance measures like accuracy,
sensitivity, specificity, false alarm rate, Matthew correlation
coefficient are computed for helix, sheet, and coil in
sequence to structure level in three cross-validated experi-
ments. Tables S5-A, S5-B, S5-C, S6-A, S6-B, S6-C, S7-A,
S7-B, S7-C describe those performance measures. For the
overall classification, it is clearly observed from Tables S8-
A, S8-B, S8-C, S9-A, S9-B, S9-C, S10-A, S10-B, S10-C,
that the introduction of structure to structure network
increases the overall classification performance of classifier
C1(sequence to structure). Table S11 summarizes the
average prediction results of these two classifiers on
CASP9 targets.

For helix, classifier C2 improves the accuracy of
classifier C1 by 9%, 10% and 10% in three-fold cross
validated experiments respectively. Classifier C2 gives
better sensitivity (19%, 19%, 16% increase) and specificity
(19%, 19%, 22% increase) than classifier C1. False alarm
rates have become less (5%, 5%, 11% decrease) in classifier
C2 than C1. The correlation coefficient for helix prediction
ranges from 0.7 to 0.72. These facts are graphically
illustrated in Figs. S1-A, S2-A, S3-A, S4-A, S5-A. For
sheet, though classifier C2 improves the accuracy of
classifier C1 by 8%, 8% and 10% in three-fold cross
validated experiments respectively but does not give better
sensitivity than classifier C1. It however gives better
specificity (8%, 4% increase) than classifier C1. In cross
validation experiment CV-3, the specificity is less. False
alarm rates and correlation coefficient of sheet are not
found to be satisfactory. These have been graphically
shown in Figs. S1-B, S2-B, S3-B, S4-B, and S5-B.

From Figs. S1-C, S2-C, S3-C, S4-C, S5-C, it is clear that
in the case of coil prediction the classifier C1 performs well
and classifier C2 increases the prediction results of C1 like
that of helix (see Table S11).

Comparison between proposed method and other popular
methods experiments with CASP9 targets

We have also compared the performance of PSP_MCSVM
with the contemporary state-of-the-art techniques. Figure 4
shows the comparison of the Q3, QH, QE, QC, SOVall,
SOVH, SOVE, SOVC score from the PSIPRED, PHD,
Predator, DSC, SIMPA96 and our method for some
randomly selected proteins from CASP9 targets. Due to
low prediction accuracy of sheet, the overall accuracy of
our classifier does not look so good compared to PSIPRED
and PHD. However, in the case of helix and coil prediction,
it achieves comparable performance with PHD. Moreover,

Fig. 3 Q3 and SOV measures
of CASP9 in two-stage
MCSVMs

Fig. 4 Bar graph representing a comparison of prediction results by
existing methods and our method PSP_MCSVM for randomly
selected proteins from CASP9 targets
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it achieves better results than Predator, DSC and SIMPA96
in helix and coil prediction.

Conclusions

We finally conclude that the designed feature set alongside
PSP_MCSVM based methodology effectively predicts the
secondary structure in protein chains. The cross-validated
experimental setup with standard RS126 dataset establishes
our claims. Target proteins from CASP9 dataset are also
tested to evaluate its prediction accuracy. Different methods
examine sliding windows of width 13–17 residues and
assume that the central amino acid can be predicted based
on the properties of its side groups on either side. The
choice of this window-width is often a concern for the
researchers. The average length for helices/strands in
protein sequences guides the prediction decisions. Ground
truth annotations suggest that the lengths of α-helices vary
from 5 to 40 residues whereas those for β-strands vary
from five to ten residues [18]. Generally, helices are of
longer lengths compared to strands. In our previous work
[24], different sliding window sizes varying from five to 13
were considered and maximum prediction accuracy for the
window width of 13 was observed. Considering that,
experiments for the present work has been conducted by
fixing the width of sliding window as 13. The
PSP_MCSVM source code, train/test datasets and supple-
mentary files are available freely in public domain at: http://
code.google.com/p/cmater-bioinfo/.

The accuracy of the current method may further be
improved by incorporating multiple classifiers and a
consensus based strategy. We may extend this work to
develop a scheme toward combining classification deci-
sions from multiple neural network based classifiers [24]
and the current results, obtained from PSP_MCSVM.
Another important issue is that the choice of dataset for
training. In this work, we trained our network using subset
of 126 proteins of RS126 dataset. The higher the number of
samples in dataset, the more variations and information in
patterns can be accommodated by the machine learning
algorithm. Perhaps, for this reason, PSP_MCSVM predicted
sheet not so accurately whereas our other work [25] did it
better. Although RS126 is popular, commonly used and
manually curated dataset but we may extend this work by
training our system with a more information contained
dataset, consisting of more labeled samples in an attempt to
achieve higher prediction accuracy.
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